ACCELERATION PRACTICE PROBLEMS

$$
\text { Acceleration }=\frac{\text { FinalVelocity }- \text { InitialVelocity }}{\text { Time }}
$$

YOU MUST SHOW YOUR WORK.

You can use a calculator but you must show all of the steps involved in doing the problem.

SHORT ANSWER

1. Does the speedometer of a car read average speed or instantaneous speed? How do you know?
2. If the speedometer of your car reads a constant speed of $40 \mathrm{~km} / \mathrm{hr}$, can you say 100% for sure that the car has a constant velocity? Explain your answer.
3. What two controls on a car cause a change in speed?
4. What control causes a change in velocity?
5. What is the acceleration of a car that travels in a straight line at a constant speed?
6. Describe a situation in which you can accelerate even though your speed doesn't change.

CALCULATIONS

7. A roller coaster car rapidly picks up speed as it rolls down a slope. As it starts down the slope, its speed is $4 \mathrm{~m} / \mathrm{s}$. But 3 seconds later, at the bottom of the slope, its speed is $22 \mathrm{~m} / \mathrm{s}$. What is its average acceleration?
8. A cyclist accelerates from $0 \mathrm{~m} / \mathrm{s}$ to $8 \mathrm{~m} / \mathrm{s}$ in 3 seconds. What is his acceleration ? Is this acceleration higher than that of a car which accelerates from 0 to $30 \mathrm{~m} / \mathrm{s}$ in 8 seconds?
9. A car advertisement states that a certain car can accelerate from rest to $70 \mathrm{~km} / \mathrm{h}$ in 7 seconds. Find the car's average acceleration.
10. A lizard accelerates from $2 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$ in 4 seconds. What is the lizard's average acceleration?
11. A runner covers the last straight stretch of a race in 4 s . During that time, he speeds up from $5 \mathrm{~m} / \mathrm{s}$ to $9 \mathrm{~m} / \mathrm{s}$. What is the runner's acceleration in this part of the race?
12. You are traveling in a car that is moving at a velocity of $20 \mathrm{~m} / \mathrm{s}$. Suddenly, a car 10 meters in front of you slams on it's brakes. At that moment, you also slam on your brakes and slow to $5 \mathrm{~m} / \mathrm{s}$. Calculate the acceleration if it took 2 seconds to slow your car down.
13. A ball is dropped from the top of a building. After 2 seconds, it's velocity is measured to be $19.6 \mathrm{~m} / \mathrm{s}$. Calculate the acceleration for the dropped ball.

CHALLENGE QUESTIONS

14. If a Ferrari, with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$, accelerates at a rate of $50 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 3 seconds, what will its final velocity be?
15. Falling objects drop with an average acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$. If an object falls from a tall building, how long will it take before it reaches a speed of $49 \mathrm{~m} / \mathrm{s}$?
16. Josh rolled a bowling ball down a lane in 2.5 s . The ball traveled at a constant acceleration of $1.8 \mathrm{~m} / \mathrm{s} 2$ down the lane and was traveling at a speed of $7.6 \mathrm{~m} / \mathrm{s}$ by the time it reached the pins at the end of the lane. How fast was the ball going when it left Tim's hand?
